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Abstract This paper is concerned with the problem of

verification of the numerical accuracy of computed infor-

mation with particular reference to a model problem in

solid mechanics. The basic concepts and procedures are

outlined and illustrated by examples.

Keywords Verification � Reliability � Error estimation �
Numerical approximation

1 Introduction

Whenever engineering or scientific computations are per-

formed, there is an implied expectation of reliability.

Without this expectation it would not be possible to justify

the time, effort and expense involved in performing the

computations. For a computation to be justifiable, satis-

factory answers have to be given to two questions: (a)

What evidence has been provided that the exact solution of

the mathematical model is a reasonable representation of

the physical reality that it is supposed to represent?, (b)

What evidence has been provided that the computed

information is sufficiently accurate for the purposes of the

decision-making it is expected to serve? This paper is

concerned only with the second question, the problem of

verification of the numerical accuracy of computed infor-

mation with specific reference to a model problem in solid

mechanics.

The importance of verification is self-evident. Given

that most engineering and scientific computations involve

numerical approximation, it is not sufficient to report the

results. It is necessary also to show that the computed data

are within acceptable error tolerances. For example, the

editors of the AIAA journals issued the following policy

statement [1]:

‘‘The AIAA journals will not accept for publication

any manuscript reporting (1) numerical solutions of

an engineering problem that fails to adequately

address the accuracy of the computed results or (2)

experimental results unless the accuracy of the data

is adequately presented.’’

Guidelines for the formulation and numerical treatment

of mathematical models for use in support of engineering

decision-making in the field of solid mechanics were

published by the American Society of Mechanical Engi-

neers (ASME) which were adopted by the American

National Standards Institute (ANSI) [2]. A critical discus-

sion of certain aspects of this document is available in [3].

To test how verification procedures would be applied in

current professional practice in a specific setting, readers of

the bulletin of the International Association for Computa-

tional Mechanics, called IACM expressions, were invited

to solve the problem described in the following section [4].

The responses received were summarized in a follow-on
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article [5]. In this paper, a detailed explanation is given of

how verification of the accuracy of the data published in [5]

was performed.

2 Problem statement

A spherical shell of thickness h = 0.06 m, crown radius

Rc = 15.00 m is connected to a stiffening ring at the

meridional angle a = 2p/9 (40�). The dimensions of the

ring are: a = 0.60 m, b = 0.50 m. The radius of the mid-

surface of the spherical shell is Rm ¼ Rc= sin a . The

notation is shown in Fig. 1. The z axis is the axis of rota-

tional symmetry.

The shell is made of reinforced concrete, assumed to be

homogeneous, isotropic and linearly elastic with Young’s

modulus E = 20.59 GPa and Poisson’s ratio m = 0.

Consider gravity loading only. The equivalent (homog-

enized) unit weight of the material comprised of the shell

and the cladding is 32.69 kN/m3. Assume that uniform

normal pressure pAB is acting at the base AB of the stiff-

ening ring. The resultant of pAB equals the weight of the

structure. Assume that the stiffening ring is weightless. The

goals of computation are as follows:

1. Find the shearing force Qa in kN/m units and the

bending moment Ma in Nm/m units acting at the

junction between the spherical shell and the stiffening

ring.

2. Determine the location (meridional angle) and the

magnitude of the maximum bending moment in the

shell.

3. Verify that the results are accurate to within 5%.

This problem was first discussed by Girkmann [6],

subsequently by Timoshenko and Woinowski-Krieger [7].

Solutions by classical methods are presented in both ref-

erences. The stiffening ring was assumed to be weightless.

Remark 1 The foregoing problem statement differs from

the original problem statement by Girkmann in two

respects: In [6], kgf (resp. cm) was used for the unit of

force (resp. length). In [7], lbf and inch units were used.

Here we use SI units. Also, one of the goals of computation

was to determine the radial force per unit length between

the ring and the shell. Here the goal is to determine the

shear force per unit length between the ring and the shell.

Remark 2 Since the problem is statically determinate

with respect to forces acting in the axial direction, the

pressure acting on the base of the ring AB can be computed

from the information provided. If the ring is assumed to be

weightless then the uniformly distributed pressure acting

on the base of the ring is pAB = 27.256 kPa. If the ring is

assumed to have the same unit weight as the shell then

pAB = 43.553 kPa.

Remark 3 According to the problem statement the shell is

made of reinforced concrete, yet it is assumed to be

homogeneous and isotropic. While the two statements are

contradictory, this is a commonly used idealization in civil

engineering practice. The inhomogeneity and anisotropy

caused by the reinforcement are neglected. We emphasize

that in this paper we are not concerned with the question of

whether the mathematical problem formulated in the

Fig. 1 The Girkmann problem.

Notation
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following section is a realistic model of a spherical shell

stiffened by a footring; clearly it is not. We are concerned

only with verification of the numerical solution of the

problem.

3 Formulation of the mathematical problem

We understand the Girkmann problem as a problem of

three-dimensional (3D) elasticity on the domain of a

spherical shell, stiffened by a ring. Because the domain, the

material properties and the boundary conditions are axially

symmetric, we will formulate the problem taking advan-

tage of simplifications made possible by the a priori

information that in cylindrical coordinates r, h, z the

solution is independent of the angle h.

The elastostatic equations of equilibrium for axially

symmetric problems in cylindrical coordinates are [8]:

1

r

oðrrrÞ
or
þ osrz

oz
� rh

r
þ Fr ¼ 0 ð1Þ

1

r

oðrsrzÞ
or

þ orz

oz
þ Fz ¼ 0 ð2Þ

where z is the axis of rotational symmetry and r is the

radial coordinate, as shown in Fig. 1. The terms Fr and Fz

represent the components of the volume forces in the radial

and axial directions, respectively.

On multiplying Eq. (1) by a test function vr = vr(r, z)

and Eq. (2) by a test function vz = vz(r, z), integrating over

the volume of the axially symmetric body and applying the

divergence theorem, we have the statement of the principle

of virtual work for axially symmetric elastostatic problems:Z

X

rr
ovr

or
þ rh

vr

r
þ rz

ovz

oz
þ srz

ovr

oz
þ ovz

or

� �� �
rdrdz

¼
Z

X

ðFrvr þ FzvzÞrdrdzþ
Z

C

ðTrvr þ TzvzÞrds ð3Þ

where X is the domain of the generating surface and C is

the boundary of X, Tr and Tz represent the surface tractions.

By definition:

Tr ¼ rrnr þ srznz ð4Þ
Tz ¼ srznr þ rznz ð5Þ

where nr, nz are the components of the unit normal to C.

Because vr and vz are arbitrary, Eq. (3) holds for all

v = {vr vz}
T for which the indicated operations are

defined. Vector v is called the virtual displacement vector.

The displacement vector will be denoted by u = {ur uz}
T.

We denote the Lamé parameters by k and G and define

the operator matrix D and the material stiffness matrix E as

follows:

D ¼

o=or 0

1=r 0

0 o=oz

o=oz o=or

2
66664

3
77775;

E ¼

kþ 2G k k 0

k kþ 2G k 0

k k kþ 2G 0

0 0 0 G

2
66664

3
77775: ð6Þ

We denote the strain vector by � ¼ f�r �h �z crzgT
. Using

the definition of strain in axially symmetric problems (see

for example [8]), we have � ¼ Du . Using Hooke’s law we

have r ¼ E� ¼ EDu where r ¼ frr rh rz srzgT
is the

stress vector. We define:

BXðu; vÞ ¼
Z

X

Dvð ÞT EDurdrdz ð7Þ

FXðvÞ ¼
Z

X

ðFrvr þ FzvzÞrdrdzþ
Z

C

ðTrvr þ TzvzÞrds: ð8Þ

In engineering terminology v is the virtual displacement

field, BX(u, v) is the virtual work of internal stresses and

FX(v) is the virtual work of external forces. Next we define

the energy space E(X):

EðXÞ ¼ fujBXðu; uÞ\1g: ð9Þ

We associate the energy norm with E(X):

kukEðXÞ ¼
1

2
BXðu; uÞ

� �1=2

: ð10Þ

We denote the domain occupied by the generating

section of the spherical shell by XS and the domain

occupied by the generating section of the ring by XR.

Therefore X ¼ XS [ XR .

In the Girkmann problem, the ring is assumed to be

weightless. Therefore Fr = 0 on X, Fz = -32.69 kN/m3

on XS, Fz = 0 on XR, Tr = 0 on C, Tz = 27.256 kPa on

CAB (see Remark 2) and Tz = 0 on C - CAB where CAB is

the base of the ring, represented by the boundary segment

AB in Fig. 1. The mathematical problem is to find

uEX [ E(X) such that

BXðuEX; vÞ ¼ FXðvÞ for all v 2 EðXÞ ð11Þ

and, having found uEX, determine the data of interest

specified in the problem statement.

The boundary conditions are prescribed tractions that

satisfy equilibrium. Therefore uEX exists in E(X) and it is

unique up to rigid body displacement in the direction of the

z axis. There are various ways by which a rigid body

constraint can be imposed. For example the average
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displacement of the base of the ring (line AB in Fig. 1) can

be set to zero or some other fixed value. In finite element

analysis uz is typically set to zero in an arbitrary node. The

energy space subject to rigid body constraint will be

denoted by E0(X). Enforcement of the rigid body constraint

does not affect of the data of interest.

Remark 4 We will also consider a variant of this problem

where the ring has the same unit weight as the shell. In that

case Fr = 0 on X, Fz = -32.69 kN/m3 on X, Tr = 0 on C,

Tz = 43.553 kPa on CAB and Tz = 0 on C - CAB.

4 Approximation

The exact solution of the problem formulated in Sect. 3 is

not known. To make the problem tractable by classical

methods or by numerical means, some method of dis-

cretization has to be used for finding an approximation to

the exact solution. This means that a subspace of E(X) has

to be constructed and an approximate solution sought in

the subspace. Of course, the approximate solution will

depend on the choice of the subspace. It is understood,

however, that the approximate solution is an approxima-

tion to uEX defined by Eq. (11). In the following dis-

cretizations used in classical and finite element analyses

are briefly described.

4.1 Classical analyses

In classical analyses, such as those presented in [6, 7],

kinematic assumptions (also called dimensional reduction

or semi-discretization) are used. The shell is formulated in

spherical coordinates .; h; u called, respectively, the radial

coordinate, circumferential angle (longitude) and the

meridional angle (colatitude). In axially symmetric prob-

lems, such as the Girkmann problem, the solution is

independent of h. Therefore the displacement vector has

only two components; uu and u.: We mention two schemes

of dimensional reduction specialized for spherical shells

subject to axisymmetric conditions.

The Naghdi shell model [9], restricted to the axisym-

metric case, is based on the following kinematic

assumptions:

uu ¼ u0ðuÞ þ ð.� RmÞwðuÞ; u.ðuÞ ¼ wðuÞ ð12Þ

where u and . are spherical coordinates. The

displacement field is characterized by three 1D field

functions: u0ðuÞ (resp. wðuÞ) is the displacement of the

mid-surface in the tangential (resp. normal) direction,

w(h) is the angular rotation of the normal to the mid-

surface.

The Novoshilov shell model [10], restricted to the axi-

symmetric case, is based on the following kinematic

assumptions:

uu¼u0ðuÞþ
ð.�RmÞ

Rm

u0ðuÞ�
dw

du

� �
; u.ðuÞ¼wðuÞ: ð13Þ

In this case the, displacement field is characterized by the

displacement components of the mid-surface in the tan-

gential and normal directions, denoted by u0(u) and w(u) ,

respectively. The shear strain cu. corresponding to this

displacement field is zero. This restriction is known as the

Kirchhoff–Love constraint which is often stated as the

assumption that normals to the mid-surface of the shell in

the reference configuration remain normals in the deformed

configuration. In references [6, 7], the Novoshilov shell

model was used. Additional assumptions were introduced

concerning the ring: It was assumed that the ring can be

treated as if it had a rectangular cross section and the

deformation of the ring can be characterized by two

numbers, the radial displacement of the centroid and the

angle of rotation with respect to the centroid. A detailed

analysis of this and similar assumptions is available in [11].

Remark 5 There is a large literature on the formulation and

justification of linear and nonlinear shell models. See, for

example [12, 13]. The intent is to approximate the solution of

the problem of 3D elasticity by a problem made simpler

through the introduction of kinematic assumptions such as

those in Eqs. (12) and (13). The justification of these models

is based on asymptotic analysis: A shell model is formulated

such that its exact solution is the correct limit of the exact

solution of the model based on 3D linear or nonlinear elas-

ticity when the thickness of the shell approaches zero.

Implied is the assumption that when the thickness is suffi-

ciently small then the exact solution of the shell model will

be a close representation of the exact solution of the 3D

model. We will understand here that the goal is to approxi-

mate the exact solution of the 3D problem of linear elasticity,

not the solution of a particular shell model.

4.2 Finite element analysis

We first consider finite element approximation of the solu-

tion of the problem given by Eq. (11). We define a finite

dimensional subspace S0(X) of E0(X). The subspace S0(X) is

characterized by the finite element mesh, comprised of tri-

angular and/or quadrilateral elements, the polynomial

degrees assigned to the elements and the functions that map

the standard triangular or quadrilateral element onto the

elements of the mesh. The data presented in this paper were

computed with StressCheck1. In StressCheck the mapping

1 StressCheck is a trademark of Engineering Software Research and

Development, Inc., St. Louis, Missouri, USA.
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functions are based on the blending function method. Curved

boundaries and surfaces are approximated by polynomial

functions using optimal collocation points. For details we

refer to [14–16]. The dimension of S0(X) is the number of

degrees of freedom (df), denoted by N.

The finite element solution uFE is that function in S0(X)

which satisfies the condition:

BXðuFE; vÞ ¼ FXðvÞ for all v 2 S0ðXÞ: ð14Þ

An important property of the finite element solution is that

it is the best approximation to the exact solution uEX in

energy norm, given the space S0(X):

kuEX � uFEkEðXÞ ¼ min
u2S0ðXÞ

kuEX � ukEðXÞ: ð15Þ

For additional details and proof we refer (for example) to

[14]. This statement shows that the error of approxima-

tion, measured in energy norm, depends on the choice of

S0(X). Furthermore, if we construct a sequence of finite

element spaces such that S0
1ðXÞ � S0

2ðXÞ; . . .; S0
nðXÞ and

compute the corresponding finite element solutions

uFE
(1), uFE

(2),…, uFE
(n) then the error kuEX � uFE

ðkÞkEðXÞ
decreases monotonically with respect to increasing k.

5 Extraction and error estimation

Since the exact solution of this problem is not known, the

error in the numerical solution has to be estimated. It is

possible to obtain guaranteed upper and lower bounds of

the error in the data of interest [17, 18], however, owing to

the complexity of the procedure, in engineering practice

this is not feasible.

In practice one of the most general and robust methods

used for estimating the errors of approximation is to

compute solutions corresponding to a converging sequence

of discretizations. Although this approach will not give

guaranteed error bounds, it is very reliable. Since the exact

solution is independent of the discretization, a necessary

condition for the errors in the data of interest to be small is

that the data of interest are substantially independent of the

discretization. To make the stronger statement that the

errors in the data of interest are within a given tolerance

involves extrapolation and judgment that the extrapolated

values are sufficiently close to their exact counterparts to

justify making the statement. This method of error esti-

mation is based on the assumptions that (a) the data of

interest are finite numbers and (b) convergence of the

sequence of discretizations in energy norm has been pro-

ven. The accuracy of the solution in energy norm is an

important measure of the quality of the approximate solu-

tion. Although good accuracy in energy norm is not always

necessary for ensuring that errors in the data of interest are

small, it should always be taken into consideration.

We are interested in computing the location and mag-

nitude of the maximum bending moment Mmax and the

bending moment Ma and the shear force Qa at the interface

between the shell and the ring. Referring to Fig. 2a, point

P0 indicates the intersection between the mid-surface of the

shell and the ring at u ¼ a . We denote the coordinates of

P0 by (Rc, Zc). The coordinates of an arbitrary point P on

the interface are denoted by (r, z).

By definition:

Mu ¼
1

Rc

Zh=2

�h=2

Tzðr � RcÞ � Trðz� ZcÞð Þrds ð16Þ

Qu ¼
1

Rc

Zh=2

�h=2

ðTr sin uþ Tz cos uÞrds: ð17Þ

Writing

r � Rc ¼ s sin u; z� Zc ¼ s cos u ð18Þ

and

Tn ¼ Tr cos u� Tz sin u; Ts ¼ Tr sin uþ Tz cos u ð19Þ

(a) (b) (c)

Fig. 2 Notation
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we have

Mu ¼ �
1

Rc

Zh=2

�h=2

Tnsrds; Qu ¼
1

Rc

Zh=2

�h=2

Tsrds: ð20Þ

5.1 Computation of Ma and Qa by extraction

The procedures for computing the moment Ma and the

shear force Qa at the shell–ring interface from the finite

element solution uFE are outlined in the following. These

procedures are based on the ideas presented in [19]. We

retain the definitions given by Eqs. (7)–(10), however, we

replace X with XS.

Let us assume for the moment that the exact solution

uEX on the entire domain X is known. We define an

extraction function wðMÞ 2EðXSÞ subject to the kinematic

boundary conditions: wn
(M) = -s, ws

(M) = 0 on Ca and

apply the principle of virtual work on XS:

BXS
ðuEX;w

ðMÞÞ ¼
Z

XS

Fzw
ðMÞ
z rdrdz�

Z

Ca

Tnsrds

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
RcM

ðEXÞ
a

:

Therefore

MðEXÞ
a ¼ 1

Rc

BXS
ðuEX;w

ðMÞÞ �
Z

XS

Fzw
ðMÞ
z rdrdz

0
B@

1
CA: ð21Þ

If we now replace uEX with uFE, we have:

MðFEÞ
a ¼ 1

Rc

BXS
ðuFE;w

ðMÞÞ �
Z

XS

Fzw
ðMÞ
z rdrdz

0
B@

1
CA: ð22Þ

On subtracting Eq. (22) from Eq. (21), we have the error in

Ma:

MðEXÞ
a �MðFEÞ

a ¼ 1

Rc

BXS
ðuEX � uFE;w

ðMÞÞ ð23Þ

on applying the Schwarz inequality we have

jMðEXÞ
a �MðFEÞ

a j � 2

Rc

kuEX � uFEkEðXSÞkw
ðMÞkEðXSÞ ð24Þ

where the mutiplier 2 comes from our definition of the

energy norm, see Eq. (10). This estimate shows that Ma
(FE)

will converge to Ma
(EX) at least as fast as uFE converges to

uEX in energy norm. It is possible to improve this estimate

and show that

jMðEXÞ
a �MðFEÞ

a j � 2

Rc

kuEX � uFEkEðXÞkz
ðMÞ
EX � z

ðMÞ
FE kEðXÞ

ð25Þ

where z
ðMÞ
EX is a smooth auxiliary function uniquely defined

by the extraction function wðMÞ: This inequality indicates

that the error in Ma, more generally the error in any data of

interest computed by extraction, can converge to zero

faster than the error in energy norm, depending on the

smoothness of z
ðMÞ
EX and the sequence of discretizations.

The proof of inequality (25) is presented in the Appendix.

The construction of the extraction function for Qa,

denoted by wðQÞ; is analogous. The essential boundary

conditions on wðQÞ are: wn
(Q) = 0, ws

(Q) = 1 on Ca.

The computation can be simplified if we select wðMÞ

such that it is zero over all but a few elements in the

neighborhood of Ca. We define

Xa;b
S ¼fr;zjr¼ .sinu; z
¼ .cosu; Rm�h=2\.\Rmþh=2; b\u\ag ð26Þ

where Rm is the radius of the mid-surface of the shell and b
is a meridional angle corresponding to an element

boundary. In the following example we will use b = 35�,

see Fig. 3. Let

SMðXa;b
S Þ ¼ fuju 2 EðXa;b

S Þ; un ¼ �s; us ¼ 0 on Ca;

un ¼ us ¼ 0 on Cbg ð27Þ

and

S0
MðX

a;b
S Þ ¼ fuju 2 EðXa;b

S Þ; un ¼ us ¼ 0 on Ca;

un ¼ us ¼ 0 on Cbg: ð28Þ

Fig. 3 The 16-element mesh. The location of the maximum bending moment is indicated by umax
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We define wðMÞ such that wðMÞ 2 SMðXa;b
S Þ andZ

Xa;b
S

ðDvÞT EDwðMÞrdrdz ¼ 0 for all v 2 S0
MðX

a;b
S Þ: ð29Þ

This definition of wðMÞ is advantageous from the compu-

tational point of view because the term BXa;b
S

ðuFE;w
ðMÞÞ

can be evaluated by multiplying the stiffness matrices of

those elements that lie in XS
a,b with the coefficients of the

corresponding solution vectors and the transpose of the

coefficients of the basis functions corresponding to wðMÞ:
Similarly, evaluation of the second term in the appropri-

ately modified Eq. (22) involves multiplication of the load

vectors with the coefficients that characterize wðMÞ: The

definition of wðQÞ is analogous.

For example, using the mesh shown in Fig. 3 and b = 35�
the functions wðMÞ and wðQÞ are shown in Fig. 4. Using these

extraction functions we find Ma = -36.81 Nm/m and

Qa = 943.6 N/m when p = 8. The trunk space was used for

the computation of uFE and the extraction functions.

Remark 6 The length of the small element bounded by

the radial lines at u ¼ 39:78� and u ¼ 40�; shown in

Fig. 3, is 1.5 times the thickness of the shell. Such elements

are commonly used in plate and shell problems approxi-

mated by the p-version in order to provide good approxi-

mation properties at the boundary layer. We will refer to

this element as the boundary layer element.

It is interesting to note that if we did not have the

boundary layer element, that is, the length of all elements

that cover the shell were the same (5�) and therefore

the mesh consisted of 15 elements only, then the

extracted values of the stress resultants would be Ma =

-36.91 Nm/m, which differs from the previously

obtained result by less than 0.3% and Qa would remain

the same.

Remark 7 The curved boundaries were approximated by a

collocation scheme based on [16], using six collocation

points. In other words polynomials of degree 5 were used

for approximating the curved boundaries of the elements.

This is the default value in StressCheck, which is fixed

independent of the polynomial degree used in the approx-

imation. Mapping was performed by the blending function

method.

The quality of the mapping was tested using the fol-

lowing measure:

d ¼ 100 ðRm � h=2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p���
���=h ð30Þ

where Rm is the mean radius of the shell, h is the thickness,

r and z are coordinates of the mapped surface. Measure d is

the difference between the radius of the ideal sphere and

the mapped radius, expressed as a percentage of the

thickness of the shell. For both the outer and inner surfaces

the maximum value of d was approximately 1.6 9 10-8,

therefore the mapping error is negligibly small. This error

has a periodic character because the elements have the

same length, with the exception of the two elements near

the interface with the ring. The mapping error was smaller

for these elements.

5.2 Computation of Qa and Ma from nodal forces

Stress resultants are typically computed from nodal forces in

h-version codes. We will show that this is formally identical

to the method described in Sect. 1, however, the extraction

function is mesh-dependent and therefore one cannot speak

of convergence of the auxiliary functions kzðMÞEX � z
ðMÞ
FE kEðXSÞ

in Eq. (25). Nodal forces have not been used in p-version

codes, however, they can be understood as applications of

the extraction procedure described in Sect. 5.1.

(a) (b)

Fig. 4 Extraction functions for

a Ma drawn to scale and b Qa

(not to scale)
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5.2.1 The h-version

We will consider 8-node quadrilateral elements. A rep-

resentative detail with generic labeling for the elements

(m1, m2,...), nodes (n1, n2,...) and nodal forces is shown

in Fig. 2b. The standard 8-node quadrilateral element is

shown in Fig. 2c. For this element the number of df per

field, denoted by nf, is 8. By definition, the compo-

nents of the nodal forces associated with the kth element

are:

f ðk;iÞr ¼
X2nf

j¼1

k
ðkÞ
ij a

ðkÞ
j � �r

ðkÞ
i i ¼ 1; 2; . . .; nf ð31Þ

f ðk;i�nf Þ
z ¼

X2nf

j¼1

k
ðkÞ
ij a

ðkÞ
j � �r

ðkÞ
i i ¼ nf þ 1; nf þ 2; . . .; 2nf

ð32Þ

where kij are the elements of the stiffness matrix, aj are the

elements of the solution vector and �ri are the elements of

the load vector corresponding to volume forces and tem-

perature loading. The superscripts refer to the kth element.

The superscripts on the components of the nodal force

vector components fr and fz indicate the element number

and the node numbers of the standard element shown in

Fig. 2c.

Corresponding to each element k and node i associated

with the standard element is a global node J which is

typically shared with other elements. The nodal force

vector components are summed over all elements that share

node J. The resulting nodal force vector components fr
(J),

fz
(J) are then treated as if they were concentrated forces

when computing stress resultants. For example, in the

Girkmann problem we are interested in the stress resultants

Qa and Ma. We denote the set of node numbers that lie on

Ca by N : The approximate values of Qa and Ma computed

from the finite element solution are:

Qa ¼
1

Rc

X
J2N
ðf ðJÞr sin aþ f ðJÞz cos aÞ ð33Þ

Ma ¼
1

Rc

X
J2N

�ðZJ � ZcÞf ðJÞr þ ðRJ � RcÞf ðJÞz

� �
ð34Þ

where RJ, ZJ are the coordinates of the nodes that lie of Ca

and Rc, Zc are the coordinates of point P0 shown in Fig. 2a.

Associated with each node is a basis function that has

the value of unity in the node and is zero in all other nodes.

We will denote the basis function associated with node J by

/J = /J(r, z). The basis function /J is nonzero only over

those elements that share node J and it is equal to the

mapped standard basis function corresponding to node

J over each of those elements. We now define the

vector functions /ðJÞr ¼ f/J 0gT
and /ðJÞz ¼ f0 /Jg

T : The

components of the nodal force vector in node J can be

written as:

f ðJÞr ¼
Z

XS

D/ðJÞr

� �T

EDuFErdrdz�
Z

XS

Fr/Jrdrdz ð35Þ

f ðJÞz ¼
Z

XS

D/ðJÞz

� �T

EDuFErdrdz�
Z

XS

Fz/Jrdrdz: ð36Þ

This follows directly from the definitions of kij
(k), �r

ðkÞ
i ; fr

(J)

and fz
(J).

We select wðQÞ such that

wðQÞs ¼
X
J2N

/Jðr; zÞ; wðQÞn ¼ 0: ð37Þ

Note that ws = 1 on Ca and wðQÞ satisfies conditions

similar to those given by Eq. (27) because it is zero on

those edges that are opposite to the edges that lie on Ca.

From Eq. (37) we have:

wðQÞr ¼
X
J2N

/Jðr; zÞ sin a; wðQÞz ¼
X
J2N

/Jðr; zÞ cos a:

ð38Þ

In view of Eqs. (33) and (35) we have:

Qa ¼
1

Rc

Z

XS

DwðQÞ
� �T

EDuFErdrdz

0
B@

�
Z

XS

ðwðQÞr Fr þ wðQÞz FzÞrdrdz

1
CA: ð39Þ

This shows that computation of Qa from nodal forces is

formally identical to the extraction procedure, the extrac-

tion function having been constructed from the basis

functions.

Similarly, we define the extraction function for Ma as

follows:

wðMÞs ¼ 0; wðMÞn ¼ �s ¼ �
X
J2N

sJ/Jðr; zÞ ð40Þ

where sJ is the value of s in Node J 2 N : Here we assumed

that the mid-side nodes are located in the mid-points of the

sides. From Eq. (40):

wðMÞr ¼ �
X
J2N

sJ/Jðr; zÞ cos a;

wðMÞz ¼
X
J2N

sJ/Jðr; zÞ sin a ð41Þ

which can be written as

wðMÞr ¼�
X
J2N
ðZJ�ZcÞ/J ; wðMÞz ¼

X
J2N
ðRJ�RcÞ/J : ð42Þ
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In view of Eqs. (34) and (36) we have the extraction formula

for Ma corresponding to the use of nodal forces:

Ma ¼
1

Rc

Z

XS

DwðMÞ
� �T

EDuFErdrdz

0
B@

�
Z

XS

ðwðMÞr Fr þ wðMÞz FzÞrdrdz

1
CA ð43Þ

where wðMÞ is the extraction function for Ma, the compo-

nents of which are defined by Eq. (42).

5.2.2 The p-version

We will assume that hierarchic shape functions based on

Legendre polynomials are used as described in [14]. These

shape functions have the important property that those

shape functions which are associated with the vertices are

linear, independently of the polynomial degree. Therefore

the definitions given for the extraction function for Qa in

Eqs. (37)–(38) and the extraction function for Ma in

Eqs. (40)–(42) are applicable to the p-version also, with the

understanding that N is the set of vertex nodes and the

mapping of the boundary where the extraction is performed

is linear. Curved boundaries require special treatment

which is not discussed here. In the p-version the nodal

force method is equivalent to the extraction method with

the domain of the extraction XS
a,b defined to be a single

element with b = 39.78�. The results, including the num-

ber of df N and the estimated relative error in energy norm

(er)E on X, are shown in Table 1. The estimated error in

energy norm was computed from the extrapolated value of

the potential energy using the method described in [14].

Note that extraction over two elements yielded exactly the

same stress resultants at p = 8, trunk space, see Sect. 5.1.

5.3 Direct computation of the stress resultants

by numerical integration

The data of interest can be determined by computing the

integrals defined in Eqs. (16) and (17) from the finite element

solution uFE numerically. However, when u ¼ a then the

points P1 and P2 shown in Figs. 2a and 5 are strongly

singular which makes numerical integration difficult.

The strong singularity of the stress component rn in the

neighborhood of point P1 is illustrated in Fig. 5a.

The results of numerical integration corresponding to

the 16-element mesh are shown in Table 2. The super-

scripts (S) and (R) indicate, respectively, whether the

integration was performed on the shell side or the ring side

of Ca. It is seen that on the shell side the data converge

strongly to values that are close to the extracted results.

Much slower convergence is evident on the ring side,

however. Integration was performed by Gaussian quadra-

ture using 14 quadrature points per element side, inde-

pendently of p.

The large differences between the stress resultants

computed from the shell side and the ring side are indi-

cations that further investigation is necessary. In order to

Table 1 Convergence of the shear force and bending moment com-

puted by extraction when XS
a,b is a single element and b = 39.78�

p N (er)E (%) Qa (N/m) Ma (Nm/m)

3 223 3.35 958.4 -39.01

4 349 1.61 946.0 -36.79

5 507 0.82 943.7 -36.89

6 697 0.64 943.6 -36.86

7 919 0.54 943.6 -36.83

8 1,173 0.46 943.6 -36.81

The 16-element mesh shown in Fig. 3 and trunk space was used

Fig. 5 a The stress component

rn in the vicinity of point P1.

Perspective projection. b Detail

of the 50-element mesh. The

geometrically graded mesh at

point P1 is shown in Fig. 5a
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achieve satisfactory accuracy on both the ring and the

shell sides, a 50-element mesh was constructed. This

mesh differs from the 16-element mesh shown in Fig. 3

over the ring and the boundary layer region only which is

shown in Fig. 5b. Four layers of geometrically graded

elements with common factor of 0.15 in the neighborhood

of point P1, three layers in the neighborhood of point P2

were constructed. Trunk spaces were used. The ring was

assumed to be weightless, the shell was loaded by volume

forces.

The results of numerical integration, including the

number of df N and the estimated relative error in energy

norm (er)E on X, are shown in Table 3. Note that at p = 8

the difference between Ma computed by numerical inte-

gration and by extraction (see Table 1) is less than 0.4%.

Based on this and similar evidence the data reported in [5]

was (conservatively) estimated to be within 2% of their

exact values.

Outside of the immediate vicinity of the shell–ring

interface the stress components are smooth functions.

Therefore the location and magnitude of the maximum

moment can be determined by numerical integration without

difficulty. The bending moment as a function of the merid-

ional angle is plotted in Fig. 6. The maximum moment

occurs at umax ¼ 38:15�, its value is Mmax = 255.1 Nm/m.

6 Results

In this section we summarize, without attribution, the

results received in response to the problem statement

published in [4] and reproduced here in Sect. 2. Fifteen

solutions were received. All were based on the finite ele-

ment method. Four solutions were based on the p-version,

eleven were based on the h-version.

Respondents used various models: axisymmetric solids,

axisymmetric shell–solid combinations, 3D solids and 3D

shell–solid combinations. The data of interest were com-

puted by direct integration, from nodal forces and by

extraction procedures. Not all respondents included esti-

mates of the location and magnitude of the maximum

bending moment. The results are summarized in Table 4.

Also shown in Table 4 are the solutions obtained by

Girkmann [6] and Pitkäranta [11] by classical methods and

a finite element solution published in [14]. The reasons for

the significant differences between the results obtained by

Girkmann and Pitkäranta are given in [11].

Table 2 Convergence of the

stress resultants computed by

numerical integration

Discretization: 16 elements,

trunk space

p N (er)E

(%)

Qa
(S)

(N/m)

Qa
(R)

(N/m)

Ma
(S)

(Nm/m)

Ma
(R)

(Nm/m)

3 223 3.35 975.8 105.7 -38.90 6.29

4 349 1.61 946.2 389.9 -36.80 6.29

5 507 0.82 943.7 519.3 -36.89 -9.15

6 697 0.64 943.6 575.7 -36.86 -14.64

7 919 0.54 943.6 626.9 -36.83 -18.20

8 1,173 0.46 943.6 671.9 -36.81 -20.80

Table 3 Convergence of the

stress resultants computed by

numerical integration

Discretization: 50 elements,

trunk space

p N (er)E (%) Qa
(S) (N/m) Qa

(R) (N/m) Ma
(S) (Nm/m) Ma

(R) (Nm/m)

3 619 3.23 2551.5 3979.3 58.72 -191.18

4 973 1.47 757.6 633.9 -34.00 -43.66

5 1,427 0.52 937.5 962.3 -37.04 -37.11

6 1,981 0.29 942.3 953.7 -37.01 -37.09

7 2,635 0.21 943.9 946.8 -36.98 -37.03

8 3,389 0.16 943.9 944.4 -36.95 -36.99
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Fig. 6 Bending moment vs meridional angle
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Only two of the respondents who used the h-version

attempted to present evidence that verification was per-

formed, however, the data of interest either failed to con-

verge or appeared to have converged to the wrong result.

The results based on the p-version were well within the

5% tolerance specified in the problem statement and all

respondents provided demonstration of convergence of the

data of interest. On the other hand, the results based on the

h-version had a very large dispersion. The reported data

were within the allowed tolerance of 5% in only two of the

11 cases. These two solutions were generated by means of

the same commercial finite element analysis software

product and the same analyst who used (a) an axisymmetric

shell–solid model and (b) a 3D solid model. This analyst

did not present evidence of h-convergence, however. Other

analysts who used the same software product reported

results that did not meet the stated requirement.

One respondent attempted to demonstrate h-conver-

gence for a 3D shell–solid model on one quarter of the

stiffened shell using six successive mesh refinements. In

the sixth refinement 120 million degrees of freedom were

used. The sequence of moments corresponding to the six

refinements still had not converged but appeared to tend to

approximately -225 Nm/m and the shear force appeared

to have converged to approximately 1,140 N/m.

Another respondent wrote ‘‘Regarding verification tasks

for structural analysis software that has adequate quality

for use in our safety critical profession of structural

engineering, the solution of problems such as the Girk-

mann problem represents a minuscule fraction of what is

necessary to assure quality.’’ We agree with this state-

ment. That is why we find it very surprising that the

answers received had such a large dispersion. As shown in

Table 4, the reported values of the moment at the shell–

ring interface ranged between -205 and 17,977 Nm/m.

Solution of the Girkmann problem should be a very short

exercise for persons having expertise in FEA, yet many of

the answers were wildly off. Analysts who cannot solve

the Girkmann problem reliably are not in a position to

claim that they can solve much more complicated prob-

lems reliably.

As noted in Remark 2, the ring was assumed to be

weightless in references [6, 7]. This is a modeling decision

most likely based on the assumption that the weight of the

ring will not affect the data of interest significantly. It was

found, however, that the weight of the ring accounts for

approximately 10% change in Ma but the other data are

insensitive to it. This effect is caused by the moment cre-

ated on the ring by gravity, when the cross section of the

ring is pentagonal, as in Fig. 1, rather than rectangular as

assumed by Girkmann and Timoshenko.

The results of computation for a model in which the unit

weight of the ring is assumed to be the same as that of the

shell are shown in Table 5.

Table 4 Summary of results

Method Qa (N/m) Ma (Nm/m) umax (�) Mmax (Nm/m)

Classical—Girkmann [6] 876.6 -110.5 37.70 225.75

Classical—Pitkäranta M–B–R model [11] 942.5 -37.45 38.08 253.97

p-Version axisymmetric solid [14] 934.5 -34.81 – –

p-Version axisymmetric solid—Extraction 943.6 -36.81 38.15 255.10

p-Version axisymmetric solid 940.9 -36.63 38.20 254.92

p-Version 3D thin solid q = 3—solid see Note 1 948.4 -37.31 38.20 254.50

p-Version axisymmetric solid 940.9 -36.80 38.15 254.80

h-Version axisymmetric solid—4 node elements 953.7 -10.57 – –

h-Version axisymmetric solid—8 node elements 953.7 -19.67 – –

h-Version axisymmetric shell—solid 593.8 -140.12 – –

h-Version axisymmetric shel—solid – -78.63 – –

h-Version 3D shell—solid 1,140.0 -205.00 37.70 215.00

h-Version 3D shell—solid 16,660.0 17,976.6 – –

h-Version axisymmetric solid 963.2 -33.73 – –

h-Version 3D shell—solid 1,015.7 86.30 – 231.09

h-Version axisymmetric shell—solid 949.2 -36.62 – –

h-Version 3D shell—solid 951.3 -38.35 – –

h-Version axisymmetric shell—solid 989.1 -89.11 38.00 238.63

The ring is assumed to be weightless. The term ‘‘thin solid, q = 3’’ in Table 4 is shorthand for indicating that anisotropic polynomial space was

used with the polynomial degree in the transverse direction fixed at 3. For the definition of anisotropic spaces we refer to [15]
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7 Closing remarks

We do not have sufficient information that would enable us

to explain the large dispersion of data reported in Table 4.

Therefore we offer some general observations only.

As noted in Sect. 5, a prerequisite to controlling the

errors of discretization is that the convergence of the

sequence of discretizations in the norm appropriate for the

formulation, such as the energy norm, has been proven. If

the sequence of the discretized solutions does not converge

in the appropriate norm then the numerical treatment is

incorrect even if in some specific cases it produces credible

results. This appears to have been the case when the analyst

attempted a sequence of discretizations and did not observe

convergence of Ma even at 120 million df.

Analysts who used shell–solid models tacitly assumed

that the classical shell theories are applicable up to the shell–

ring interface, that is over the entire range of the meridional

angle 0\u\40� . This assumption has to be justified, see

Remark 5 and Fig. 5a. As part of the process of conceptu-

alization it is necessary to determine where the interface

between the shell and the solid should be, given that the data

of interest are as defined in the Problem Statement. This can

be decided through virtual experimentation [3].

We noted that computation of stress resultants from nodal

forces was formally identical to extraction on a fixed mesh.

However, in the h-version the extraction function changes as

the mesh is refined and therefore we cannot speak of con-

vergence of the extraction function in the sense of Eq. (25).

Therefore it is possible that as a mesh is refined the error in

the nodal forces increases faster than the error in energy

norm decreases. One respondent reported lack of h-con-

vergence in Ma but satisfactory convergence in Qa. As far as

the authors know, the accuracy of stress resultants computed

from nodal forces has not been analyzed.

It is a fairly common practice to ‘‘tune’’ the finite ele-

ment mesh so as to match some known data, such as

experimental observations. This practice is ill advised

because it seeks to compensate for errors in the mathe-

matical model by errors in the numerical approximation

and therefore it violates the guidelines for verification and

validation. Some analysts asked what the ‘‘target values’’

of the data of interest were and were disappointed that we

did not provide this information until the deadline for the

submission of answers to the challenge problem published

in [4] passed. We believe that benchmark exercises should

always include the requirement of verification of the

accuracy of the data of interest and an explanation of how

verification was performed.

The results presented in Table 4 indicate that the

requirements of verification pose challenges that users and

vendors of commercial finite element analysis software

products should urgently address.

Appendix: Proof of inequality (25)

The function wðMÞ was defined on XS and is extended by

zero over X. Therefore, wðMÞ is discontinuous on Ca and it

does not lie in E(X). In other words, kwðMÞkEðXÞ has no

meaning. On the other hand kwðMÞkEðXSÞ is well defined.

We define an auxiliary function z
ðMÞ
EX 2 EðXÞ as follows:

BXðzðMÞEX ; vÞ ¼ BXS
ðwðMÞ; vÞ for all v 2 EðXÞ ð44Þ

where BXS
ðwðMÞ; vÞ is a bounded functional on E(X). This

guarantees that the function z
ðMÞ
EX 2EðXÞ exists. The

function z
ðMÞ
EX is uniquely determined up to rigid body

displacement in the axial direction. It is continuous and

smooth on X. By selecting v = uEX - uFE, Eq. (23) can

be written as:

MðEXÞ
a �MðFEÞ

a ¼ 1

Rc

BXðuEX � uFE; z
ðMÞ
EX Þ: ð45Þ

Next we define z
ðMÞ
FE 2 SðXÞ as follows:

BXðzðMÞFE ; vÞ ¼ BXðzðMÞEX ; vÞ for all v 2 SðXÞ: ð46Þ

The function z
ðMÞ
FE is the projection of z

ðMÞ
EX onto the finite

element space S(X). By the Galerkin orthogonality:

BXðuEX � uFE; vÞ ¼ 0 for all v 2 SðXÞ ð47Þ

therefore we can select v ¼ z
ðMÞ
FE and divide by Rc to obtain:

1

Rc

BXðuEX � uFE; z
ðMÞ
FE Þ ¼ 0: ð48Þ

Upon subtracting Eq. (47) from Eq. (45), we have:

MðEXÞ
a �MðFEÞ

a ¼ 1

Rc

BXðuEX � uFE; z
ðMÞ
EX � z

ðMÞ
FE Þ ð49Þ

and Eq. (25) follows from the Schwarz inequality.

Table 5 Summary of results

Method Qa (N/m) Ma (Nm/m) umax (�) Mmax (Nm/m)

Classical—Pitkäranta M–B–R model [11] 943.8 -41.12 38.13 252.21

p-Version axisymmetric solid—nodal force 949.3 -40.91 38.20 253.94

p-Version axisymmetric solid—automesh 947.3 -40.88 38.15 253.90

The ring is assumed to have the same unit weight as the shell
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Remark 8 Owing to the regularity of z
ðMÞ
EX on X the rate of

convergence of z
ðMÞ
FE is likely to be comparable to the rate

of convergence of uFE. Therefore, the error in Ma
(FE) will be

roughly proportional to the square of the error in energy

norm, which is the same as the error in strain energy. Note

that we have been concerned with an upper estimate of the

error in Ma
(FE). Under various circumstances the actual error

may be much smaller than the upper estimate. Generally

speaking, the extraction method is very robust as illustrated

by the numerical results presented in this paper.
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6. Girkmann K (1956) Flächentragwerke, 4th edn. Springer, Wien

7. Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates

and shells, 2nd edn. McGraw-Hill, New York

8. Timoshenko S, Goodier JN (1951) Theory of elasticity, 2nd edn.

McGraw-Hill, New York

9. Naghdi PM (1963) Foundations of elastic shell theory. In: Seddon

IN, Hill R (eds) Progress in solid mechanics, vol 4. North-Hol-

land, Amsterdam

10. Novozhilov VV (1964) Thin shell theory. P. Noordhoff Ltd,

Groningen
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15. Szabó B, Düster A, Rank E (2004) The p-version of the finite

element method. In: Stein E, de Borst R, Hughes TJR (eds)

Encyclopedia of computational mechanics, Chap, 5, vol 1. Wiley,

Chichester
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