


## New Features and Enhancements in StressCheck v11.1



ESRD, Inc. July 2022



© 2022 ESRD, Inc. All Rights Reserved. StressCheck® is a registered trademark of ESRD, Inc.

New Features & Enhancements in SC 11.1

- General GUI Cleanup, Tune-ups, Optimizations & Fixes
  - Performance Improvements for Object Rendering and Loads Display/Updating
  - Windows Layout Startup Preference Now Available in Options
- New Thin Section Automesh Method with Penta or Hexa-Dominant Option
- Boundary Layer Automesh Method Now with Mixed Mesh (Hexa/Penta/Tetra) and Shrink-To-Fit/Trim-to-Fit Options
- Crack Front Automesh Method Now with Curvature D/H, Mixed Mesh,
  Integration Layer, and Grade Toward Ends Options
  - Also Extended to Cracks at Symmetry Planes

STRESSCHECK

New Features & Enhancements in SC 11.1

- New Global-Local Features for Load Scaling/Reversal
  - Parametric TLAP Scaling for Linear and Incremental Nonlinear Analyses
  - Point Load and Point Constraint Object Displays Now Available in Case Definitions Dialogs
- Improvements to COM API Functionality and Online Documentation
  - Features Added for Multi-body Contact Analysis, TLAP CSV Importation and More
- New Getting Started and Offline Documentation Available in Help Menu
  - Easily Navigable and Searchable CHM Formats

#### Upgrades to Spatial Interop and MeshSim Libraries

• StressCheck v11.1 Now Supports InterOp2021.1.0.1 and MeshSim v17.0

STRESSCHECK

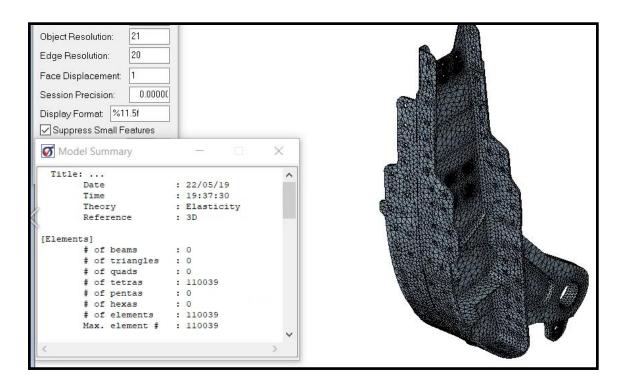
# GENERAL GUI CLEANUP, TUNE-UPS, OPTIMIZATIONS & FIXES

Performance improvements for object rendering and loads display/updating Windows layout startup preference now available in Options

ТΜ



## **Optimized Grid/Pane/Dialog Behavior**


- The autohide of tabbed/pinned panes and dialogs has been significantly optimized, with no lag when gaining/losing focus.
- Automesh progress dialog now appears when changing parameters that force a re-mesh.
- Enhanced/upgraded grid controls for Parameters, Nonlinear Events, Point Load/Constraint Definitions, Laminate Stack, and other tabular input features.
- Improvements/fixes made to pane/dialog persistence between StressCheck sessions.

| Paramet | ters             |      |            |       |       | - u ×       | New Project x                                |
|---------|------------------|------|------------|-------|-------|-------------|----------------------------------------------|
| Name    | Desc             | Expr | Value      | Limit | Class | Sort        |                                              |
| Dh      | Hole Diameter    |      | 6.0000e-01 | >0    | Gen   | 01          |                                              |
| W       | Lug Width        |      | 1.2000e+00 | >0    | Gen   | 02          |                                              |
| thk     | Lug Thickness    |      | 3.7500e-01 | >0    | Gen   | 03          |                                              |
| tp      | Clevis thickness |      | 2.5000e-01 | >0    | Gen   | 04          |                                              |
| tw      | Clevis back wall |      | 4.0000e-01 | >0    | Gen   | 05          |                                              |
| Rf      | Clevis fillet    |      | 1.0000e-01 | >0    | Gen   | 06          |                                              |
| Fo      | Load             |      | 5.0000e+03 | >0    | Gen   | 07          |                                              |
| Кс      | Contact Stiffne  |      | 1.0000e+07 |       | Gen   | 08          |                                              |
| gap     | Clevis gap       |      | 0.0000e+00 |       | Gen   | 09          | Constant of the second                       |
| ga      | Pin gap          |      | 0.0000e+00 |       | Gen   | 10          | A COMPANY AND A SAME AND AN                  |
| dist    | Lug clevis sep   |      | 0.0000e+00 |       | Gen   | 11          | Updating Model                               |
|         |                  |      |            |       |       |             | Please wat<br>Creating volume mesh<br>Cancel |
|         | ept Delete       | Aut  | o Step 0.2 | Set   | tings | Filter by ( |                                              |

## **Object Rendering Enhancements**



- Significant enhancements made to HOOPs visualization features to optimize the speed of element/model rendering.
  - Reduced lag in drawing model updates.
  - Users with larger models (e.g. >50k elements) will notice at least 2-5X faster rotation/zoom/translation times when interacting with the model display, even at higher edge resolutions.
- Additional cleanup of HOOPs visualization features performed to enable larger model rendering and future architectural modifications.



#### \_\_\_\_\_

records.

#### Check load ID95Disable/enable load ID101010

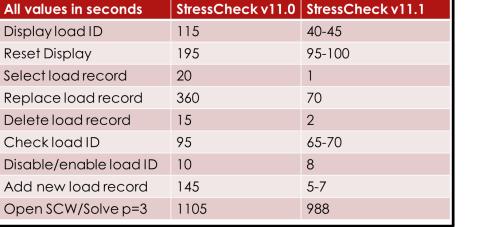
 Significant improvements observed when displaying/updating loads for models with large numbers of TLAP Traction/Bearing load records.

Enhancements and re-factoring of the

the general updating of load case

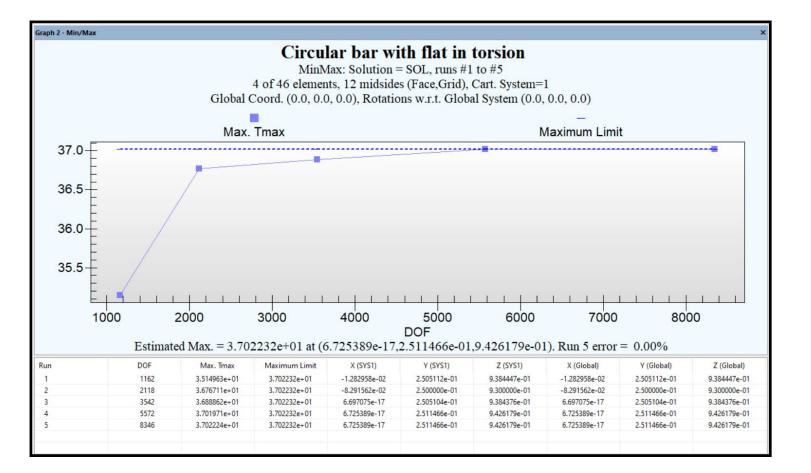
display of load attributes (arrows) and

Load Display/Updating Optimizations


- Adding/replacing/deleting load records has been re-factored to reduce excessive checking.
- The summary tables on right are from a model with 89k elements and dozens of TLAP load records, with and without attributes enabled.

#### Load Attributes ENABLED

| All values in seconds  | StressCheck v11.0 | StressCheck v11.1 |
|------------------------|-------------------|-------------------|
| Display load ID        | N/A               | N/A               |
| Reset Display          | 12-15             | 10                |
| Select load record     | 5-7               | 1                 |
| Replace load record    | 120-125           | 40                |
| Delete load record     | 2-5               | 1                 |
| Check load ID          | 95-105            | 65                |
| Enable/disable load ID | 10-15             | 10                |
| Add new load record    | 150               | 1                 |
| Open SCW/Solve p=3     | 940               | 815               |


Load Attributes DISABLED





#### Improved Column Ordering for Extractions

- Data table columns for Min/Max and Points extractions have been optimized for readability.
  - Run # and extraction function columns now precede XYZ/RTZ columns.
  - Local XYZ/RTZ columns now precede global XYZ/RTZ columns.



STRESSCHECK

### **New Window Layout Startup Preference**

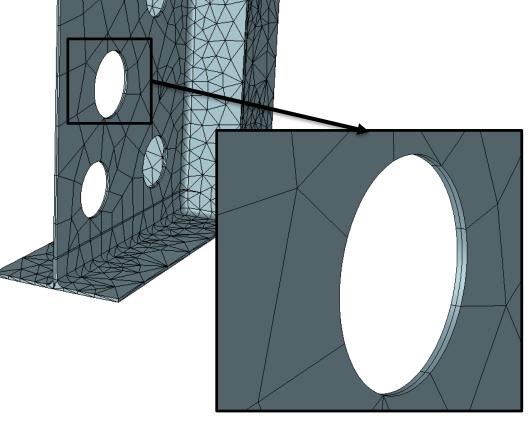
- A new preference is available under File > Options for the Window Layout.
  - The default preference is to use the window layout configuration from the user's last session (Last Session).
  - This preference can be set to any saved window layout available under View > Window Layout, or to use StressCheck v11.1's default window layout (Default).

| Options             | ×                        |
|---------------------|--------------------------|
| Path to Scratch Dir | ectory:                  |
| C:\Users\blancaste  | er\AppData\Local\ Browse |
| Units:              | in/lbf/sec/F $\sim$      |
| Graphics:           | Auto ~ Check             |
| Window Layout:      | Last Session $\sim$      |
| Line Thickness:     | 1                        |
| Object Resolution:  | 100                      |
| Edge Resolution:    | 20                       |
| Display Format:     | %.4e                     |
| Courier New, 1      | .0 pt. Display Font      |
| Lucida Consol       | e,9 pt. Legend Font      |
| 🖂 Show warning r    | nessages                 |
| 🗹 Trace boundarie   | es                       |
| Perspective         |                          |
| Image Export Dim    | ensions                  |
| Model Window        | Ŷ                        |
| Custom              | 1048 × 449               |
|                     | Default                  |
|                     | OK Cancel Apply          |



### **New Thin Section Automesh Method**

TM


Incorporate pentas/hexas through thin structures/regions (e.g. webs, skins)

#### This feature is useful when meshing

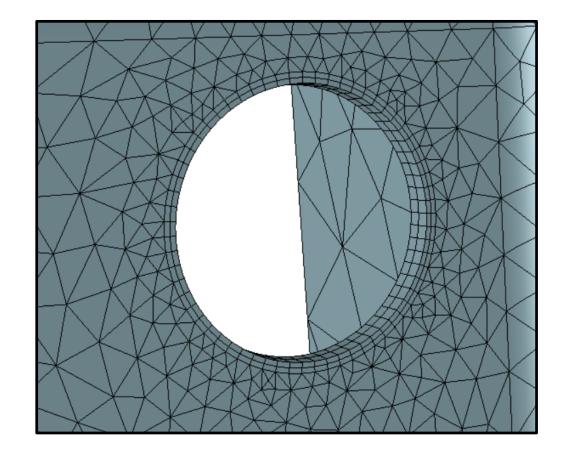
areas that would otherwise produce very high aspect ratio tetrahedrons that may negatively impact solution quality and computational time.

## **New Thin Section Automesh Method**

- This new and powerful automeshing feature creates a structured mesh of several layers through a "thin" region.
  - Specified by source and destination faces (similar to the Extrude method).
  - Supports mixed meshing (penta/hexa/tetra) via Pentahedron or Hexa-Dominant options.






## ENHANCED BOUNDARY LAYER AUTOMESH METHOD

TM

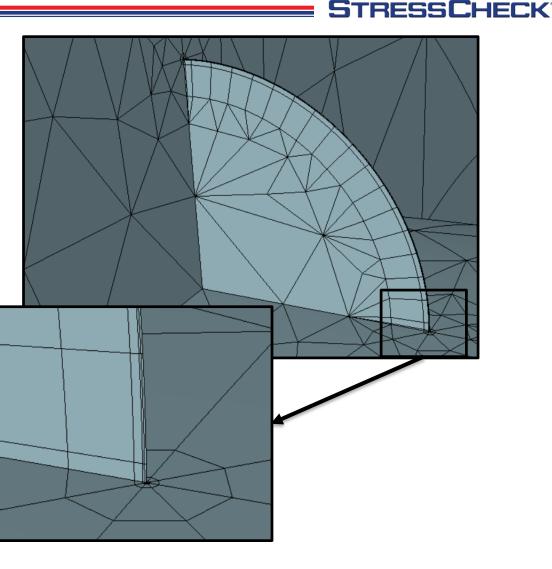
Include pentas/hexas and/or shrink to fit adjustments in boundary layer meshes

# Upgraded Boundary Layer Automesh Method

- The existing Boundary Layer automesh method has been enhanced to include Mixed Mesh and Shrink to Fit options.
  - Mixed Mesh (on by default) controls whether the boundary layer mesh will be constructed of only tetrahedrons (off) or a mix of pentahedrons & hexahedrons (on).
    - If the boundary layer is applied to a surface, the mesher will attempt to produce a quad-dominant mesh on the selected surface in order to produce a mostly hexahedral boundary layer mesh.
    - If applied, to a curve, the innermost layer of elements will be all pentahedrons, with hexahedrons in the outer layers.
  - Shrink to Fit (off by default) controls whether boundary layers will be trimmed or shrunk to avoid intersections.



STRESSCHECK


## ENHANCED CRACK FRONT AUTOMESH METHOD

TM

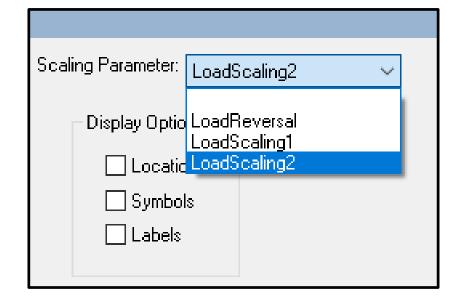
Include pentas/hexas, an integration layer of elements, and/or grade toward ends refinement to crack front automeshes

## **Upgraded Crack Front Automesh Method**

- The existing Crack Front automesh method has been enhanced to include D/H Curvature, Mixed Mesh, Integration Layer and Grade Toward Ends options.
  - Mixed Mesh (on by default) functions the same as for the Boundary Layer method, controlling whether the mesh around the crack front is constructed entirely of tetras or a mix of pentas and hexas.
  - Integration Layer (on by default) will add an additional layer of refinement around the innermost layer for optimal fracture extractions.
  - Grade Toward Ends (off by default) will produce a geometric gradation toward either end of the selected curve.
- Crack Front method also extended to support refinement at symmetry planes.






## New Global-Local Features for Load Scaling/Reversal

TM

Parametric TLAP scaling for linear/incremental nonlinear analyses Point Load and point constraint object displays now available in Case Definitions dialogs

## New Parametric TLAP Scaling Feature

- Users will now have the option to apply parametric scaling to TLAP loads.
  - This functionality is implemented such that all TLAPs under a single Case ID will be uniformly scaled (i.e multiplied) by the current value of a scaling parameter.
  - The scaling parameter may be any parameter defined within the model.
  - It is selected using the Scaling Parameter dropdown on the Point Load Case Definitions dialog as shown on right.
- Parametric TLAP scaling is applicable to linear, design study and incremental nonlinear analyses.
  - To be used in Nonlinear Events, it must be defined as Class "B. Cond."







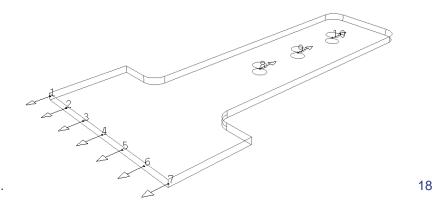
## Extended Point Loads/Constraints Display Options

Rotations:

Add

**STRESSCHECK** 

Symbols


Labels

- TLAP and imported running load display options are now available directly from the Point Load Case
   Definitions dialog (via Edit > Point Load Info).
- Imported point displacement/rotation display options are now available directly from the Point Constraint Case Definitions dialog (via Edit > Point Constraint Info).

| Point Load Cas | se Defin | nitions       |          |               |         |              |                 |            |        |        | × |
|----------------|----------|---------------|----------|---------------|---------|--------------|-----------------|------------|--------|--------|---|
| Current Case:  |          | ~             | Case ID: |               | Number: |              | Scaling Paramet | ter:       |        | $\sim$ |   |
| Location:      | X: [     |               | ] Y:     |               | Z:      |              | Display O       | ptions     |        |        |   |
| Forces:        | Fx       |               | Fy:      |               | Fz:     |              |                 | cations    |        |        |   |
| Moments:       | Mx:      |               | My:      |               | Mz:     |              | Syn             | mbols      |        |        |   |
| Thick          | kness:   |               | ]        |               |         |              | 🗌 Lab           | pels       |        |        |   |
|                | _        |               | 1        |               |         |              |                 |            |        |        |   |
| Add            | Re       | eplace Delete | Purge C  | ase Purge All | < Pre   | vious Next > | ]               |            |        |        |   |
|                |          |               | Purge C  | ase Purge All | < Pre   | vious Next > | ]               |            |        |        |   |
|                |          | eplace Delete | Purge C  | ase Purge All | < Pre   | vious Next > |                 |            | _      |        | × |
|                | aint Ca  |               |          | e ID:         |         | vious Next > |                 |            |        | _      | × |
| Point Constr   | aint Ca  |               |          | *** * *       |         |              |                 | Display Op | otions | _      | × |

Rz:

< Previous



Next >

Bx:

Replace

Delete

Ry:

Purge Case

Purge All

#### **ADDITIONAL ENHANCEMENTS AND FEATURES**

TM

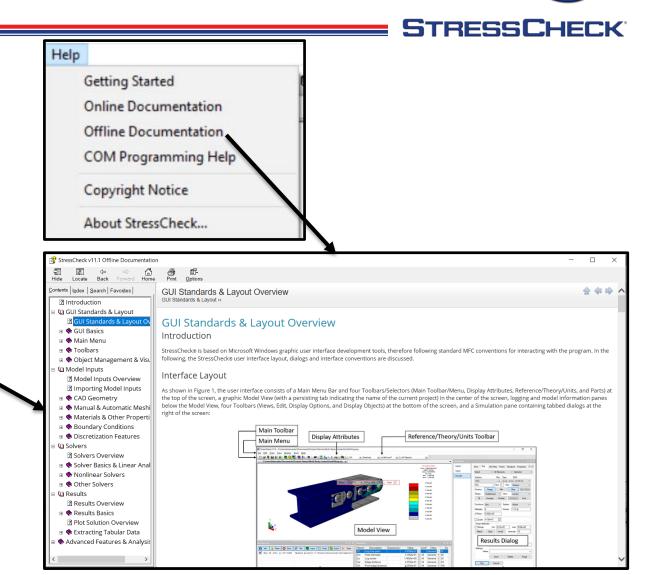
New COM API Functionality and Documentation New Getting Started and Offline Documentations

#### New COM API Functionality and Documentation

- Key enhancements incorporated into StressCheck's COM API include:
  - Multi-body contact solver options for iterations, max contact pressure error and ray tolerance
  - Support for importation of TLAP CSV file formats
  - Element face set extractions/plots optimized for performance
  - Surfaces collection now available for querying any surface in the model
- New online documentation articles available for users learning StressCheck's COM API.
  - <u>https://www.esrd.com/support/stresscheck-</u> <u>documentation/stresscheck-com-api-overview/</u>
  - Code snippets in VBA and Python



STRESS


StressCheck Automation Fundamentals

~ API Overview

- Advanced StressCheck Automation: Model Setup & Analysis
- Advanced StressCheck Automation: Model Editing & Updating
- Commonly Used StressCheck API Functions

## New Offline Documentations Available Under Help

- The Help menu has been revamped to include new Getting Started and Offline Documentation options.
  - The **Getting Started** guide has been upgraded from a simple PDF to an easily navigable/searchable CHM file.
  - The Offline Documentation has been converted from a continuous PDF to an expansive, comprehensive CHM file organized by topic/keyword and incorporating playable GIFs of StressCheck's features.
- An Online Documentation option is still available for the latest documentation updates.
  - <u>https://www.esrd.com/support/stresscheck-documentation/</u>



TM

#### **QUESTIONS OR COMMENTS?**

#### Contact <a href="mailto:support@esrd.com">support@esrd.com</a>